AT

&WW, s

| PSL»

Building a Formally Verified High-Performance

Multi-Platform Cryptographic Library in F*

Presented by: Marina Polubelova
January 17, 2022
Prosecco, INRIA Paris

Jury Members
President: Véronique CORTIER Reviewers:

Supervisor: Karthikeyan BHARGAVAN Examiners:

Peter SCHWABE

Paul ZIMMERMANN
Manuel BARBOSA
Jonathan PROTZENKO

1/57

High-Performance Cryptography

Many security-critical applications need efficient and secure
implementations of cryptographic algorithms

Applications (6
-

| i

Cryptographic

'
R4

protocol Signal protocol

i i

x25519, ed25519,
AES-CBC, SHA-256,
HMAC, HKDF

Cryptographic
library

2/57

Multi-Platform Cryptographic Library

To address the demand for high-performance crypto,
general-purpose libraries include dozens of mixed assembly-C
implementations for each primitive, highly optimized for multiple

platforms

e e.g., OpenSSL includes 14 implementations for Poly1305

File LoC File LoC
poly1305-x86_64.pl 3287 poly1305.c 333
poly1305-ppc.pl 1620 poly1305_ieee754.c 320
poly1305-x86.pl 1411 poly1305-mips.pl 318
poly1305-armv4.pl 998 poly1305-ia64.S 302
poly1305-sparcv9.pl 886 poly1305-c64xplus.pl 269
poly1305-s390x.pl 55 poly1305_base2. 44.c 115
poly1305-armv8.pl 747 poly1305_ppc.c 37
poly1305-ppcfp.pl 614

Total

12012 3/57

High-Assurance Cryptography

It is notoriously hard to write cryptographic code that is

fast, secure and functionally correct

CVE Vulnerability Broken property
2018-5407 EC multiplication timing leak side-channel resistance
2018-0734 bignum timing leak side-channel resistance
2018-0737 bignum timing leak side-channel resistance
2017-3736 carry propagation bug functional correctness
2017-3732 carry propagation bug functional correctness
2017-3731 out of bounds access memory safety
2016-7054 incorrect memset memory safety
2016-6303 integer overflow functional correctness

4/57

Formal Verification

Testing and fuzzing might help find some bugs, but not all

This work advocates the use of formal verification to
mathematically prove the absence of such implementation bugs

e Proof assistants: Coq, F*, Why3, Idris, Agda, etc.

e Prior Research Projects

e FIAT-crypto (2019)
— C code
e HACL* (2017) I
o CryptoLine (2017)

o SAW/Cryptol (2016)

e Jasmin (2017)
e Vale (2017)

Assembly.
code

5/57

HACL*: a verified C cryptographic library (2017)

e A library of verified cryptographic algorithms
e AEAD: ChaCha20-Poly1305
e ECC: Curve25519, Ed25519
Hashes: SHA-256 and SHA-512
HMAC and HKDF
High-level APls: crypto_box and crypto_secretbox

e Developed as a collaboration between the Prosecco team at
INRIA Paris and Microsoft Research

6/57

HACL*: a verified C cryptographic library (2017)

e Implemented and verified in F* and compiled to C

e Memory safety proved in the C memory model
e Secret independence (“constant-time") enforced by typing
e Functional correctness against a mathematical specification

e Generates readable, portable, standalone C code

e Performance comparable to hand-written C crypto libraries
e Used in Mozilla Firefox, Wireguard VPN, miTLS, etc.

7/57

HACL* Programming workflow

Crypto Standard State-of-the-art
(IETF or NIST) C code
M M
High-level spec Low-level spec Stateful code
(Pure F*) (Pure F*) (Low)

e High-level spec: a mathematical spec of a crypto primitive
e Low-level spec: a pure spec of an optimized algorithm
e Stateful code: a Low* impl of the optimized algorithm

8/57

HACL* Programming and Verification workflow

Crypto Standard State-of-the-art
(IETF or NIST) C code

Y
High-level spec Low-level spec Stateful code
to_hl to_ll

(Pure F¥) (Pure F¥) (Low*)
L N
liizh 13 VERIFY VERIFY
e functional (F) (F) PROVE
correctness e functional correctness
l l e memory safety
‘ COMPILE ’ ‘ COMPILE ’ e secret independence of
(F* backend) (KreMLin) stateful code
| |

[OCaml code] [C code]

9/57

ing Verified Cryptographic Code (Curve25519)

The Curve25519 elliptic curve is standardized as IETF RFC7748

Crypto Standard
(IETF or NIST)

Internet Research Task Force (IRTF) A. Langley
Request for Comments: 7748 Google
Category: Informational M. Hamburg
ISSN: 2070-1721 Rambus Cryptography Research
S. Turner

sn3rd

January 2016

Elliptic Curves for Security
Abstract

This memo specifies two elliptic curves over prime fields that offer
a high level of practical security in cryptographic applications
including Transport Layer Security (TLS). These curves are intended
to operate at the ~128-bit and ~224-bit security level, respectively,
and are generated deterministically based on a list of required
properties.

10/57

Writing Verified Cryptographic Code (Curve25519)

For t = bits-1 down to O:

—— k_t (k> 1t) &1
Crypto Standard swap "= k_t
(IETF or NIST) // Conditional swap; see text below.

(x_2, x 3) = cswap(swap, x_2, x_3)
. (z_2, z 3) = cswap(swap, z 2, z 3)

)
swap = kK t

Algorithm

Pseudo code

W >
nn
[gR =]

|
NN WW

NXNXONDDOMNMwWw>>
nun
x
w
+
N
w

// Conditional swap; see text below.
(x 2, x 3) = cswap(swap, x 2, x_3)
(z_2, z 3) = cswap(swap, z 2, z 3)
Return x 2 * (z 2™(p - 2))

11/57

Writing Verified Cryptographic Code (Curve25519)

High-level spec uses mathematical operations over arbitrary size integers

Crypto Standard let prime : pos = pow, 255 - 19
(IETF or NIST) llet elem = x:IN{x < prime}
R
v llet (+%) (x y:elem) : elem = (x + y) % prime
. llet (-%) (x y:elem) : elem = (x - y) % prime
Algorithm et (*%) (x y:elem) : elem = (x x y) % prime
Pseudo code
- let add_and_double (x_1,z_1) (x_2,z_2) (x_3,z_3) =
v let a = x_2 +% z_2 in
i let aa = 3 *% a in
High-level spec let b= x 2 -% 2.2 in
(Pure F*) let bb = b *% b in
-) let e = aa -% bb in
let ¢ = x_3 +% z_3 in
let d = x_3 -% z_3 in
let da = d *% a in
let cb =c *% b in
let x_3 = (da +% cb) *% (da +% cb) in
let z_3 = x_1 *% (da -% cb) *% (da -% cb) in
let x_2 = aa *% bb in
let z. 2 = e *% (3a +% 121665 *% e) in

(x_2,z.2), (x_3,2_3)

12/57

Writing Verified Cryptographic Code (Curve25519)

State-of-the-art C code: Adam Langley's donna-c64 is the portable C
implementation of Curve25519 for 64-bit platforms

Crypto Standard
(IETF or NIST)

—
|
— Y

Algorithm
Pseudo code

-
1
v

High-level spec
(Pure F*)

State-of-the-art
C code

static void
fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmgp /* input Q - Q' */) {
limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5]
zzprime[5], zzzprime[5];

memcpy(origx, x, 5 * sizeof(limb));
fsum(x, z);
fdifference_backwards(z, origx); // does x - z

memcpy (origxprime, xprime, sizeof(limb) * 5)
fsum(xprime, zprime);

fdifference_backwards(zprime, origxprime);

fmul(xxprime, xprime, z);

fmul(zzprime, X, zprime);

memcpy(origxprime, xxprime, sizeof(limb) * 5);

fsum(xxprime, zzprime);

fdifference_backwards(zzprime, origxprime);

fsquare_times(x3, xxprime, 1);

fsquare_times(zzzprime, zzprime, 1);

fmul(z3, zzzprime, gmgp); 13/57

Modular Multiplication for Curve25519 on 64-bit platforms

2] a

bs | by | b1 | bo

a-bo
Jr
a~b1-264
T F F +
+
a
a

< by - 2192
-b

o
a-bmod p

e p =225 _ 19, each field element has up to 255 bits
e Field arithmetic with a radix-25* representation
a=ag+ap-2% + ay 2128 4 55. 2192
a is stored as an array of four 64-bit unsigned integers
e Modular reduction: 22%6 mod p = 38
14/57

What can go wrong?

] a
b

b3 | b | b1 | by

.—Q i i i a- by

+ +
+

e an aran e s by 2
TF F T

0192

a-b3

r Ja-b
a-bmod p

e Functional Correctness: missing carry propagation steps?
e Memory Safety: accessing arrays a and b out of bounds?
e Secret Independence: skipping multiplications with zero?

15/57

Faster Modular Multiplication for Curve25519

G (& @ (@ (3,2
b

(b) (b9 (bd (k) ([bg

b
18 bits 13 bits 26 bits COCOCHOC T et

+ ¥ F T
B - POOOD |ja#

5Lbits 51bits 1026ts ()T JC I 2 by 2
F ¥ F O F +

no carry propagation @@@@D - by - 2193

until mod p a- by - 2204

30 &3 €3 3 &8 GO
@2 bmod 5

264

Multiplication in radix-2°% is too slow
The well-known optimization is to use radix-2°!
3:30+31'251+82'2102+33~2153+24'2204
a is stored as an array of five 64-bit unsigned integers
2255

Modular reduction:

mod p = 19

Implemented in donna-c64, fiat-crypto, HACL*, etc.
16/57

Writing Verified Cryptographic Code (Curve25519)

Crypto Standard let felemg = lbuffer 5ul

IETF or NIST

(o) val fmul (out fq f,:felemg) : Stack unit
: (requires A h —

Algorithm Live h out A live h f; A live h f, |A
Pseudo code

eq_or_disjoint f; f, A eq_or_disjoint fy outll\

-

. eq_or_disjoint f, outlA fmul_pre h fq f5)
High-level spec (ensures A hg _ hy —
(Pure F*) modifies (loc out) hg hy|A fmul_post hy out A

fevalg hqy out == fevalg hg fq *% fevalg hg le)

State-of-the-art

C code
; e Memory Safety
Stateful code e Functional Correctness
(Low*)

e Secret Independence

17/57

Secret Independence

val sec_int_t: inttype — Typeg

let int_t (t:inttype) (l:secrecy_level) = match (1, t) with
| SEC, _ — sec_int_t t
| PUB, Ug — LowStar.UInt8.t |

val logand: #t:inttype — #l:secrecy_level
—intttl—ointttl—intttl

val 1t: #t:inttype — int_t t PUB — int_t t PUB — bool

e Define the set of constant-time operations on secret integers
e Constant-time operations: +, *, =, =, &, |, 7, >>, <<
e Variable-time operations: /, %, ==, <, >
e Depends on the target platform

e Secret integers cannot be used for branching, array indices,

array lengths, and loop counters
18/57

Open Problems: Performance

There is a significant gap in performance between
verified C code and assembly (1.1 — 5.7x)

How can we bridge this gap?
e Can we write verified assembly for each platform?
It seems hard
e Our approach: obtain verified optimized code for multiple

platforms from one generic implementation in F*

e Jasmin (2017)
e Vale (2017)

e FIAT-crypto (2019) e Coeode Assembly.__

o HACL* (2017) i
o Cryptoline (2017)
o SAW/Cryptol (2016)

code

19/57

Open Problems: Arbitrary-Precision Arithmetic

There is no verified implementation of cryptographic algorithms
that rely on arbitrary-precision arithmetic

Can we implement and verify such algorithms in F*7

e a constant-time bignum library

e a portable bignum library

e an implementation of RSA-PSS and FFDHE (2048 — 8192 bits)
needed for signing and key exchange in TLS 1.3

e Bignum256, Bignumb512, Bignum4096, etc.

needed for elliptic curves and ElectionGuard

20/57

Our approach and results

We write generic verified code in F* that compiles to optimized C
code for different platforms, composable with verified assembly

e EverCrypt: a Verified Cryptographic Provider

e share the code between assembly and C implementations
e Curve25519

e A Verified Bignum Library

e share the code between 32-bit and 64-bit bignum libraries
e RSA-PSS, FFDHE, Ed25519

e HACL xN: Verified Generic SIMD Crypto

e share the code between scalar and vectorized implementations
e ChaCha20-Poly1305, SHA2-mb, Blake2

21/57

Our approach and results

We write generic verified code in F* that compiles to optimized C
code for different platforms, composable with verified assembly

e EverCrypt: a Verified Cryptographic Provider

e share the code between assembly and C implementations
e Curve25519

21/57

Faster Modular Multiplication for Curve2551

b3 | by | b1 | by
fererer e
TN +
+
+
a-bs- 2192
e s

(o @ alalsbmdp

Radix-2%4 multiplication can be implemented efficiently using the
Intel ADX and MULX instructions

e Two addition instructions ADOX and ADCX compute

addition with a carry using two independent carry flags
e We can implement multiplication with two parallel carry chains
e These instructions are not available in C,

so we have to write this function in assembly 22/t

Mixed assembly-C implementation of Curve25519

HACL*-v1
e Verified a radix-2°1

monolithic implementation

EverCrypt.Curve25519

(Low*)
Curve25519 51 Curve25519_64
(Low*) (Low*)

Curve25519.Generic
(Low*)

HACL*-v2
e Completely restructured the

code to allow multiple field
arithmetic implementations
e |dentified performance

Curve25519.Fields
critical functions for radix-264 (Low*)

e The Vale project

implemented and verified Curve25519. Field51 Curve25519.Field64
them in Intel assembly (Low*) (Core in Vale)
e Verified the composition of fadd, fsub, fmul1, fmul,

. fmul2, fsqr, fsqr2, cswap
Low* and Vale code in F*

23/57

Multiplexing for Modular Multiplication

type field_spec = | Mgy | Mgy

let felem (s:field_spec)| = match s with
| M5q1 — lbuffer sec_uintggq 5ul

| Mgq — lbuffer sec_uintggq 4ul

let fmul|(#s:field_spec)| (out fq fp:felem s) : Stack unit

(requires A h —
live h out A live h f4 A live h f; A
eq_or_disjoint fq1 f; A eq_or_disjoint fq out A
eq_or_disjoint f; out A fmul_pre h fq f))

(ensures A hg _ hq —
modifies (loc out) hg hy A fmul post hq out A
|feval hq out == feval hg fq *% feval hg fzb =

match s with
| M5y — fmul_51 out fq f

| Mgg — fmul_64 out fq fp
e Memory Safety, Functional Correctness, Secret Independence
e Multiplexing: composing multiple field arithmetic

implementations 24/57

Curve25519 Performance

Implementation Radix Language CPU cycles
donna-c64 25! 64-bit C 159634
fiat-crypto 251 64-bit C 145248
amd64-64 251 Intel x86_64 asm 143302
sandy2x 225 Intel AVX asm 135660
HACL*-v2 portable 2% 64-bit C 135636
openssl 264 Intel ADX asm 118604
Oliveira et al. 264 Intel ADX asm 115122
HACL*-v2 targeted 2% 64-bit C 113614

+ Intel ADX asm

25/57

Our approach and results

We write generic verified code in F* that compiles to optimized C
code for different platforms, composable with verified assembly

e EverCrypt: a Verified Cryptographic Provider

e share the code between assembly and C implementations
e Curve25519

e A Verified Bignum Library

e share the code between 32-bit and 64-bit bignum libraries
e RSA-PSS, FFDHE, Ed25519

e HACL xN: Verified Generic SIMD Crypto

e share the code between scalar and vectorized implementations
e ChaCha20-Poly1305, SHA2-mb, Blake2

26/57

Our approach and results

We write generic verified code in F* that compiles to optimized C
code for different platforms, composable with verified assembly

e A Verified Bignum Library

e share the code between 32-bit and 64-bit bignum libraries
e RSA-PSS, FFDHE, Ed25519

26/57

A Bignum Library

Many cryptographic algorithms work with large numbers that do

not fit within a machine word

e Elliptic Curve Cryptography
e arithmetic modulo a prime of several hundred bits in size
e Curve25519, Curved448, P-256, P-384, P-521, etc.
e a modulus is usually known in advance
e a “default” implementation for any prime of any size
e Finite-Field Cryptography
e arithmetic modulo a large number of thousands bits in size
e RSA, RSA-PSS, FFDHE, ElGamal, Paillier, etc.
e a modulus is not known in advance, it is not always a prime,

even its size is unknown

27/57

A Verified Bignum Library

Modular
Exponentiation
a® mod n
mod n
Elliptic Curve
Modular e Scalar Multiplication
X Exponentiation
Integer reduction [a]P
arithmetic Point addition,
doubling

Modular arithmetic

Exponentiation is defined as a repeated application of a
commutative monoid operation

e Modular Exponentiation: repeated modular multiplication

e Elliptic Curve Scalar Multiplication: repeated point addition

28/57

Modular Exponentiation

a?modn=a-a-...-a mod n
————

b times

29/57

Modular Exponentiation

a’modn=ga-a-...-a3 mod n
—_—
b times
a’ mod n=(...((a-a) mod n-a) mod n-...-a) mod n

The naive method requires b — 1 modular multiplications!

29/57

Modular Exponentiation

a’modn=ga-a-...-a3 mod n
—_—
b times
a’ mod n=(...((a-a) mod n-a) mod n-...-a) mod n

e Generic methods, where a and b may vary
e Binary method, Fixed-window method

e Fixed base methods, where a is fixed
e Fixed-base comb method

e Fixed exponent methods, where b is fixed
e Addition-chain method

29/57

Binary Method for Modular Exponentiation

b

a’modn=ga-a-...-a modn
—_—

b times

e a binary representation for an exponent b:

ab — a(bg...belbo)Q — abg-2[-‘r...+b2-22+b1-2+bo

30/57

Binary Method for Modular Exponentiation

b

a’modn=ga-a-...-a modn
—_—

b times

e a binary representation for an exponent b:
b = g(be-b2bibo)2 — abz-2[+---+b2-22+b1-2+b0

e using Horner's method we can write it as follows
ab = (((-..(12-a%)2.)2 a2)2. g)2 abo

30/57

Binary Method for Modular Exponentiation

b

a’modn=ga-a-...-a modn
—_—

b times

e a binary representation for an exponent b:
b = g(be-b2bibo)2 — abz-2[+---+b2-22+b1-2+b0

e using Horner's method we can write it as follows
ab = (. (12 a2 g)2
e Left-to-right binary method

acc; = a(be--be—j)2

=((...(1%2-a%)%...)%. abzf(,;l))2 . gbe—i

= (acC,'71)2 . gbe—i (bg... bg_;...bzblbo)z
g

1 bit

30/57

Fixed-Window Method for Modular Exponentiation

a?modn=a-a-...-a modn
—_—

b times

e a radix-2" representation for an exponent b:
b — g(beebabibo)ow _ gbe(2%) . A-b2-(2%)?+b1(2)+bo

a? = (((... (12" - ab)2" ..)27 . gP2)2" . gh)2" L gbo

o Left-to-right fixed-window method

acc; = a(bz...bg_,')Qw

= ((...(1%" - aP)2" ..)" abef(;fl))ZW . gbei

= (aCC,-il)2W . gbe—i (bg... bp—j...bab1bg)ow
—

w bits

31/57

Verified Exponentiation

class comm_monoid (t:Type) = {
one: t;
mul: t - t — t;
== a);

lemma_one: a:t — Lemma (mul a one
lemma_mul_assoc: a:t — b:t — c:t —

Lemma (mul (mul a b) ¢ == mul a (mul b c));
lemma_mul_comm: a:t — b:t — Lemma (mul a b == mul b a)

}
val exp 12r_lemma: #t:Type — k:comm_monoid t
— a:t — bBits:IN — b:IN{b < pow, bBits} —
== pow k a b))

Lemma (lexp 12r k a bBits b
e Functional Correctness: Left-to-right binary method matches

a mathematical definition of exponentiation
32/57

How to compute a - a efficiently?

33/57

Squaring

How to compute a - a efficiently?

ay an al ao Xa
ap an ai ao a
a- ag a- ap
-
a-a a-a-p
. 2
a-ap a-ax- 3
-
a-a a-ap- Bt
n.y+1 ‘e rn n o res
a a a a a
¢ 2 1 0 »
ay an ar ao a
ao-az~ﬂe+...+ ao~az~,62+ao~a1‘[3l +ao~30‘60f’30
aca B+t B taa P+ A a B _:7'31'5
a4+t Bt @A B+ a0 B f-ag-ﬁa
2.0 042 041 A L
a4+ a7+ apa B A B |aap B
Mn.y+1 ce rn n (s} res

33/57

Generic Bignum Representation and Verified Squaring

let limb_t = ti:inttype{t = U3, v t = Ugyl
let Lbignum (t:limb_t) (len:size_t) = lbuffer len

val bn_sqr (#t:limb_t) (len:bn_len t) (a:Llbignum t len)
(res:lbignum t (len +! len)) : Stack unit

(requires A h —

live h a A live h res A disjoint res a)
(ensures A hg _ hy —

modifies (loc res) hg hy A

|lbn_v hqy res == lbn_v hg a x lbn_v hg ab

e Memory Safety
e Functional Correctness
e Secret Independence

34/57

Karatsuba Multiplication

How to compute a - b efficiently?

35/57

Karatsuba Multiplication

How to compute a - b efficiently?

The well-known optimization is Karatsuba Multiplication

T a =a-p+a
by | b | b =b-B72+b
(ay- by J ag - bo a1 by B+ ag - bo
[a1-bp+ag- by] (31 -b0+ag-b1)-ﬂl/2
r2.1+1 D) n n res

a-b= (a1 B2+ a0) - (b1- B2+ bo)
=a1-by- B4 (a1 bo+ a0 br)- B2+ a9 by
e Subtractive variant
ay-bo+ap-bi=ar-bi+ap-byg—(ap—a1) (bo— b1)
e Additive variant
ai-bo+ag-b1=(ap+a1) (bo+ b1)—a1-b1—ao- by

35/57

Montgomery Multiplication

How to compute a- b mod n efficiently?

36/57

Montgomery Multiplication

How to compute a- b mod n efficiently?

e Montgomery multiplication replaces the expensive division
by n with a fast division by a carefully chosen r

e Modular addition, subtraction, and multiplication can be
efficiently done in the Montgomery domain

aM=a-rmodn bM=b-rmodn c=cM-r ' modn

aM. bM ooy cM op mont_op
(a+ b) mod n (aM + bM) mod n
to_mont from_mont
(a—b) mod n (aM — bM) mod n
2b op ¢ a-bmodn mont_redc (aM - bM)

36/57

Montgomery Exponentiation

How to compute a? mod n efficiently?

37/57

Montgomery Exponentiation

How to compute a? mod n efficiently?

pow_mont
aM =a-rmodn (aM - d)? - r mod n
r-dmodn=1
to_mont from_mont
a a® mod n
pow_mod

e pow_mod: repeated modular multiplication
e pow mont: repeated Montgomery multiplication

37/57

Verified Montgomery Arithmetic

val pow_mont_1is_pow_mod (n r:pos) (d:Z{r x d ¥ n = 1}) (aM:nat_mod n) (b:IN) :
Lemma qpow_mont nrdaMb==powmod #n (aM x d % n) b x r % nD

val bn_mont_mul (#t:limb_t) (k:pbn_mont_ctx t)
(aM bM cM:buffer (uint_t t SEC)) : Stack unit

(requires A h — ...)
(ensures A hg _hy — ... A modifies (loc cM) hg hy A
Ibn_mont_v hy k cM == (bn_mont_v hg k aM x bn_mont_v hg k bM) % bn_mont_n hg 4)

e Memory Safety, Functional Correctness, Secret Independence

Extracted C code for modular exponentiation
typedef struct bn_mont_ctx_u64_s {
uint32_t len;
uinté4_t *n;
uint64_t mu;
uint64_t *r2;
} bn_mont_ctx_ué4;

bn_mont_ctx_u64 *bn_mont_ctx_init(uint32_t len, uint64_t *n);
voild bn_mod_exp_consttime_precomp(bn_mont_ctx_u64 *k,

uint64_t *a, uint32_t bBits, uint64_t *b, uint64_t *res);
38/57

Verified Applications

Modular
Exponentiation

a® mod n
mod n

Elliptic Curve
Scalar Multiplication
L

Modular

Integer reduction
arithmetic

Exponentiation

Point addition,
doubling

Modular arithmetic

e Applications of arbitrary size bignums
e FFDHE, RSA-PSS

e Applications of fixed size bignums
e Bignum?256, Bignum4096

e Applications of exponentiation for EC Scalar Multiplication
e Ed25519

39/57

Performance Benchmarks

Implementation 2048 3072 4096 6144 8192
openssl-asm 6785 21509 50414 173646 411168
gmp-asm 8554 27121 62724 207042 486562
openssl-no-mulx 10613 34773 82075 279073 670069
HACL*-v2 15969 51940 116838 381314 878264
openssl-portable 39055 113443 263119 828745 1862540
gmp-portable 47283 149781 425988 1442425 3388961

Performance benchmarks for constant-time modular exponentiation a® mod n,
where a, b and n are bignums of the same length. Measurements are in cycles

(thousands) for input lengths ranging from 2048 to 8192 bits.

e Future work: use Vale code for ADX and MULX to close the

performance gap

40/57

Our approach and results

We write generic verified code in F* that compiles to optimized C
code for different platforms, composable with verified assembly

e EverCrypt: a Verified Cryptographic Provider

e share the code between assembly and C implementations
e Curve25519

e A Verified Bignum Library

e share the code between 32-bit and 64-bit bignum libraries
e RSA-PSS, FFDHE, Ed25519

e HACL xN: Verified Generic SIMD Crypto

e share the code between scalar and vectorized implementations
e ChaCha20-Poly1305, SHA2-mb, Blake2

41/57

Our approach and results

We write generic verified code in F* that compiles to optimized C
code for different platforms, composable with verified assembly

e HACL xN: Verified Generic SIMD Crypto

e share the code between scalar and vectorized implementations
e ChaCha20-Poly1305, SHA2-mb, Blake2

41/57

Multi-Platform Cryptography

How to speed up other implementations of algorithms in HACL*?
The biggest performance impact comes from vector instructions
e e.g., Poly1305 in OpenSSL

Crypto Standard
(IETF or NIST)
— File LoC
Algorithm
P @zila poly1305-x86_64.pl 3287
— poly1305-ppc.pl 1620
A poly1305-x86.pl 1411
— poly1305-armvé4.pl 998
ARM oo poly1305-sparcv9.pl 886
ez poly1305-s390x.pl 755
poly1305-armv8.pl 747
AVX AVX2 AVX512 poly1305-ppcfp.pl 614

42/57

HACL xN: Verified Generic SIMD Crypto

e We identify the generic SIMD crypto programming patterns:
e Exploiting Internal Parallelism (Blake2)
e Multiple Input Parallelism (SHA-2)
e Counter Mode Encryption (ChaCha20)
e Polynomial Evaluation (Poly1305)

e We write one generic SIMD implementation in Low* and
compile it to multiple platforms:

e 128-bit vector instructions: ARM Neon and Intel AVX
e 256-bit vector instructions: Intel AVX2
e 512-bit vector instructions: Intel AVX512

43/57

HACL* Programming workflow

Crypto Standard State-of-the-art
(IETF or NIST) C code
M M
High-level spec Low-level spec Stateful code
(Pure F*) (Pure F*) (Low)

e High-level spec: a mathematical spec of a crypto primitive
e Low-level spec: a pure spec of an optimized algorithm
e Stateful code: a Low* impl of the optimized algorithm

44/57

HACL xN programming workflow

Crypto Standard SIMD Patterns Library

(IETF or NIST) (Low’)
) Generic vectorized Generic vectorized Stateful generic
High-level spec . '
(Pure F*) high-level spec < ---4 low-level spec < - - - { vectorized code
ure
(Pure F*) (Pure F*) (Low*)

High-level spec: a mathematical spec of a crypto primitive
e Generic vectorized high-level spec:
a mathematical spec of a vectorized algorithm

Generic vectorized low-level spec:
a pure spec of a vectorized algorithm

Stateful generic vectorized code:
a Low™ impl of the vectorized algorithm

45 /57

HACL xN programming and verification workflow

Crypto Standard
(IETF or NIST)

SIMD Patterns Library
(Low*)

|

High-level spec
(Pure F*)

le---

Generic vectorized
high-level spec

PR

Generic vectorized
low-level spec

Stateful generic
vectorized code

PR

to-hl (Pure F*) (Pure F*) toll (Low*)
VERIFY VERIFY VERIFY PROVE
(F) (F) (F))
o functional correctness
e memory safety
PROVE COMPILE

COMPILE
(F* backend)

OCaml code

|

e functional correctness

e secret independence of

(KreMLin)

stateful code

32-bit C code
(portable)

1

128-bit SIMD code
(Intel AVX/ARM Neon)

Il

256-bit SIMD code

512-bit SIMD code
(Intel AVX2)

(Intel AVX512)

I

46/57

Parallelizing Polynomial evaluation (Poly1305)

e The main computation in the Poly1305 MAC evaluates the
following polynomial over Z,, where p = el I

a=(my xr"+mxr"t4 .. 4+ m,xr)modp

e In practice, Horner's method is used

a=(..(0+m)xr+m)xr+...4+my)xrmodp

o w=2
ar = (... ((myxr?+mg)xr®+ms)xr*+...+m,_1) mod p
a> = (... ((maxr?4+my)xr>+me)xr’>+...+m,) mod p

a=(arxr*+a;xr) mod p

47/57

Scalar Field Arithmetic for Poly1305

High-level spec | mathematical integers | c=a-+ b

Low-level spec | machine integers ci=aj+ b;

38 bits 38 bits 12 bits

x a B ERENEREN
|

26 bits 20 bits 52 bits [Ty | s |[B |[b1) Bo |

no carry propagation { C4 M a3 M 2 M c M <o }

0|l 4o

until mod p

p =239 — 5 each element has up to 130 bits
The well-known optimization is to use radix-22°
a=ap+ay-20+4a, 2243528 45,2104
a is stored as an array of five 64-bit unsigned integers
2130

Modular reduction: mod p=5

Implemented in donna-c32, fiat-crypto, HACL*, etc.

48/57

Vectorized Field Arithmetic for Poly1305, w =2

High-level spec | mathematical integers | ¢ = a+b
f=d+e
Vectorized sequences of [c;£] = map2 (+) [a;d] [b;el

High-level spec | mathematical integers
Vectorized 128-bit machine [ci; fi] = [ai; di] +v [bi; ei
Low-level spec | vector instructions

c f a d b e
Lo o] =[2)d]+[&]=]
e] =[a)a]+ [&])a]
lee]=[2e]+[L])=]
Le 6] =[=e]+[b]s]
Lo A] = [2e)ld]+ [b o]

e.g., +, =mm_add_epi64 for Intel AVX 49/57

Verified Vectorized Field Arithmetic for Poly1305

let felem (s:field spec) = lbuffer ksec_uint64xN s)lSul

val fadd (#s:field_spec) (out fq fp:felem s) : Stack unit
(requires A h —
live h out A live h f{ A live h f; A
eq_or_disjoint fq f, A eqg_or_disjoint fq out A
eq_or_disjoint f; out A fadd_pre h fq f5)
(ensures A hg _ hy —
modifies (loc out) hg hy A fadd_post hqy out A
[Feval hy out == map, (+%) (feval hg 1) (feval hg f3)))

e Memory Safety
e Functional Correctness

e Secret Independence

50/57

Performance Benchmarks

Algorithm Intel Kaby Lake Laptop Intel Xeon Workstation ARM Raspberry Pi 3B+
Our Code Other Our Code Other Our Code Other
Scalar | AVX2 Fastest | Scalar | AVX512 | Fastest | Scalar | Neon Fastest
ChaCha20 | 3.73 0.77 0.75 5.74 0.56 0.56 8.69 5.19 4.49
Poly1305 1.59 0.37 0.35 2.31 0.39 0.51 4.20 3.11 1.50

Blake2b 2.56 2.26 2.02 3.97 3.13 2.84 6.99 - 6.02
Blake2s 4.32 3.34 3.06 6.63 4.52 4.11 11.42 | 15.30 9.80
SHA24.256 | 7.41 1.62x8 | 1.49x8 | 11.36 | 1.69x8 | 2.29x8 | 15.70 | 12.92x4 | 15.09
SHAzg4,512 | 5.06 1.95x4 | 3.25 7.38 1.44x8 | 4.99 1127 | - 9.77

We measure CPU cycles per byte when processing 16384 bytes.

e Vectorization provides a measurable speedup for all our code
on AVX2 and AVX512 (1.1 — 10x)

e Our code is between 3 — 15% slower than the fastest available
hand-optimized assembly code on AVX2 and AVX512

51/57

Programming and Verification Effort

Algorithm Coding and Verification Effort (LoC) Specialized Implementations
Scalar | Vec | Equiv | Low* | Out. Portable | Arm A64 Intel x64
Spec Spec | Proof | Impl. | C C code Neon AVX | AVX2 | AVX512
ChaCha20 | 151 182 | 819 510 | 4083 v v v v v
Poly1305 56 122 | 370 2361 | 7136 v v v v v
(arith) +3594
Blake2b v v
Blake2s 430 441 | 324 1077 | 2824 v v v
SHA224,256 v v v v
' 213 420 662 1360 | 4647
SHA3g4,512 4 v v
Total: 850 12242 18690 8 5 5 7 4

e § algorithms

e 4 Low™* implementations

e 3 portable C implementations

e 21 vectorized implementations for 4 architectures

52/57

Contributions

Summary of research contributions:

e the first mixed assembly-C verified code

e the first verified bignum library suitable for crypto

e the first verified implementations of RSA-PSS and FFDHE

o the first verified vectorized implementations for ARM Neon
and AVX512

e the first verified vectorized implementations for Blake2 and
SHA-2

53/57

Contributions

Summary of research contributions:

e significantly improved speeds for all algorithms in HACL*-v1
(between 3 — 10x)
e a more complete HACL*-v2 that now supports
high-performance multi-platform implementations of
e full ciphersuite of TLS 1.3 (Chacha20-Poly1305, X25519,
SHA-2, RSA-PSS)
e other protocols like WireGuard

54/57

Deployment

Performance Improvements
via Formally-Verified
Cryptography in Firefox

e Improving the implementation of
cryptography in Tezos Octez

depth | 140October2021 | Nomadic Labs

e Various algorithms from our verified cryptographic library are
already deployed in
e Mozilla’'s NSS cryptographic library
e Tezos blockchain
e Wireguard VPN
e Zinc crypto library for the Linux Kernel, etc.
e All our code is publicly available at

https://github.com/project-everest/hacl-star
55 /57

https://github.com/project-everest/hacl-star

Limitations and Future work

e Programming and Verification effort
e Protections against side-channel attacks

e The coverage of algorithms

e Post-Quantum Cryptography
e Lightweight Cryptography
e Zero-Knowledge Proofs, etc.

56,57

Verified Implementation of Post-Quantum Cryptography

The need for constant-time and highly-optimized
functionally-correct code for newly designed constructions is dire

e e.g., an exploitable timing leakage was found in the official
reference implementation of FrodoKEM

// If (Bp == BBp & C == CC) then ss = F(ct k'), else ss = F(ct || s)
// Needs to avoid branching on secret data as per:

17/ Qian Guo, Thomas Johansson, Alexander Nilsson. A key-recovery timing attack on post-quantum

17/ primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In CRYPTO 2020.
int8_t selector = ct_verify(Bp, BBp, PARAMS_N*PARAMS_NBAR) | ct_verify(C, CC, PARAMS_NBAR*PARAMS_NBAR);

// If (selector == @) then load k' to do ss = F(ct || k'), else if (selector == -1) load s to do ss = F(ct || s)

ct_select((uint8_t*)Fin_k, (uint8_t*)kprime, (uint8_t*)sk_s, CRYPTO_BYTES, selector);

e As a first case study, we have built formally verified portable C
implementations for all versions of FrodoKEM

57/57

