Innía_

Building a Formally Verified High-Performance Multi-Platform Cryptographic Library in F^{*}

Presented by: Marina Polubelova

January 17, 2022

Prosecco, INRIA Paris

Jury Members

President:	Véronique CORTIER	Reviewers:	Peter SCHWABE
			Paul ZIMMERMANN
Supervisor:	Karthikeyan BHARGAVAN	Examiners:	Manuel BARBOSA
			Jonathan PROTZENKO

High-Performance Cryptography

Many security-critical applications need **efficient** and **secure** implementations of cryptographic algorithms

Multi-Platform Cryptographic Library

To address the demand for high-performance crypto, general-purpose libraries include dozens of mixed assembly-C implementations for each primitive, highly optimized for multiple platforms

• e.g., OpenSSL includes 14 implementations for Poly1305

File	LoC	File	LoC
poly1305-x86_64.pl	3287	poly1305.c	333
poly1305-ppc.pl	1620	poly1305_ieee754.c	320
poly1305-x86.pl	1411	poly1305-mips.pl	318
poly1305-armv4.pl	998	poly1305-ia64.S	302
poly1305-sparcv9.pl	886	poly1305-c64xplus.pl	269
poly1305-s390x.pl	755	poly1305_base2_44.c	115
poly1305-armv8.pl	747	poly1305_ppc.c	37
poly1305-ppcfp.pl	614	Total	12012

3/57

It is notoriously hard to write cryptographic code that is *fast, secure* and *functionally correct*

CVE	Vulnerability	Broken property
2018-5407	EC multiplication timing leak	side-channel resistance
2018-0734	bignum timing leak	side-channel resistance
2018-0737	bignum timing leak	side-channel resistance
2017-3736	carry propagation bug	functional correctness
2017-3732	carry propagation bug	functional correctness
2017-3731	out of bounds access	memory safety
2016-7054	incorrect memset	memory safety
2016-6303	integer overflow	functional correctness

Testing and fuzzing might help find some bugs, but not all

This work advocates the use of **formal verification** to *mathematically prove* the absence of such implementation bugs

- Proof assistants: Coq, F*, Why3, Idris, Agda, etc.
- Prior Research Projects

• A library of verified cryptographic algorithms

- AEAD: ChaCha20-Poly1305
- ECC: Curve25519, Ed25519
- Hashes: SHA-256 and SHA-512
- HMAC and HKDF
- High-level APIs: crypto_box and crypto_secretbox
- Developed as a collaboration between the Prosecco team at INRIA Paris and Microsoft Research

- \bullet Implemented and verified in F^\star and compiled to C
 - Memory safety proved in the C memory model
 - Secret independence ("constant-time") enforced by typing
 - Functional correctness against a mathematical specification
- Generates readable, portable, standalone C code
 - Performance comparable to hand-written C crypto libraries
 - Used in Mozilla Firefox, Wireguard VPN, miTLS, etc.

HACL* Programming workflow

- High-level spec: a mathematical spec of a crypto primitive
- Low-level spec: a pure spec of an optimized algorithm
- Stateful code: a Low* impl of the optimized algorithm

HACL* Programming and Verification workflow

The Curve25519 elliptic curve is standardized as IETF RFC7748

Crypto Standard (IETF or NIST) Internet Research Task Force (IRTF) A. Langlev Request for Comments: 7748 Google Category: Informational M. Hamburg ISSN: 2070-1721 Rambus Cryptography Research S. Turner sn3rd January 2016 **Elliptic Curves for Security** Abstract This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Laver Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.


```
For t = bits - 1 down to 0:
    k t = (k >> t) \& 1
    swap ^= k t
    // Conditional swap; see text below.
    (x 2, x 3) = cswap(swap, x 2, x 3)
    (z 2, z 3) = cswap(swap, z 2, z 3)
    swap = k t
    A = x 2 + z 2
    AA = A^2
    B = x 2 - z 2
    BB = B^2
    E = AA - BB
    C = x 3 + z 3
    D = x 3 - z 3
    DA = D * A
    CB = C * B
    x 3 = (DA + CB)^2
    z = x + 1 + (DA - CB)^2
    x 2 = AA * BB
    z = E * (AA + a24 * E)
// Conditional swap; see text below.
(x 2, x 3) = cswap(swap, x 2, x 3)
(z 2, z 3) = cswap(swap, z 2, z 3)
Return x 2 * (z 2^{(p - 2)})
```

High-level spec uses mathematical operations over arbitrary size integers

let prime : $pos = pow_2 255 - 19$ **let** elem = $x: \mathbb{N} \{x < prime\}$ **let** (+%) (x y:elem) : elem = (x + y) % prime **let** (-%) (x y:elem) : elem = (x - y) % prime **let** (*%) (x y:elem) : elem = (x × y) % prime let add and double (x 1,z 1) (x 2,z 2) (x 3,z 3) = **let** a = x 2 +% z 2 **in** let aa = a *% a in let b = x 2 - % z 2 in let bb = b *% b in let e = aa -% bb in **let** c = x 3 +% z 3 **in** let d = x 3 - % z 3 in let $da = \overline{d} * \% a \overline{in}$ let cb = c *% b in **let** x 3 = (da +% cb) *% (da +% cb) **in let** z 3 = x 1 *% (da -% cb) *% (da -% cb) **in let** x 2 = aa *% bb **in** let z 2 = e *% (aa +% 121665 *% e) in (x_2,z_2), (x_3,z_3)

State-of-the-art C code: Adam Langley's donna-c64 is the portable C implementation of Curve25519 for 64-bit platforms


```
static void
fmonty(limb *x2, limb *z2, /* output 20 */
      limb *x3, limb *z3, /* output 0 + 0' */
      limb *x, limb *z, /* input 0 */
      limb *xprime. limb *zprime. /* input 0' */
      const limb *amap /* input 0 - 0' */) {
 limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5]
       zzprime[5], zzzprime[5];
 memcpy(origx, x, 5 * sizeof(limb));
  fsum(x, z);
  fdifference_backwards(z, origx); // does x - z
  memcpv(oriaxprime, xprime, sizeof(limb) * 5);
  fsum(xprime, zprime);
  fdifference_backwards(zprime, origxprime);
  fmul(xxprime, xprime, z);
  fmul(zzprime, x, zprime);
 memcpy(origxprime, xxprime, sizeof(limb) * 5);
  fsum(xxprime, zzprime);
  fdifference backwards(zzprime, origxprime);
  fsquare times(x3, xxprime, 1);
  fsquare times(zzzprime, zzprime, 1);
  fmul(z3, zzzprime, qmqp);
```

13/57

Modular Multiplication for Curve25519 on 64-bit platforms

p = 2²⁵⁵ - 19, each field element has up to 255 bits
Field arithmetic with a radix-2⁶⁴ representation

 $a = a_0 + a_1 \cdot 2^{64} + a_2 \cdot 2^{128} + a_3 \cdot 2^{192}$

a is stored as an array of four 64-bit unsigned integers

• Modular reduction: $2^{256} \mod p = 38$

What can go wrong?

- Functional Correctness: missing carry propagation steps?
- Memory Safety: accessing arrays *a* and *b* out of bounds?
- Secret Independence: skipping multiplications with zero?

Faster Modular Multiplication for Curve25519

- Multiplication in radix-2⁶⁴ is too slow
- The well-known optimization is to use radix-2⁵¹

 $a = a_0 + a_1 \cdot 2^{51} + a_2 \cdot 2^{102} + a_3 \cdot 2^{153} + a_4 \cdot 2^{204}$

a is stored as an array of five 64-bit unsigned integers

- Modular reduction: $2^{255} \mod p = 19$
- Implemented in donna-c64, fiat-crypto, HACL*, etc.

- Memory Safety
- Functional Correctness
- Secret Independence

Secret Independence

```
(* the type of secret integers is abstract *)
val sec_int_t: inttype → Type<sub>0</sub>
let int_t (t:inttype) (l:secrecy_level) = match (l, t) with
| SEC, _ → sec_int_t t
| PUB, U<sub>8</sub> → LowStar.UInt8.t | ...
val logand: #t:inttype → #l:secrecy_level
→ int_t t l → int_t t l
val lt: #t:inttype → int_t t PUB → int_t t PUB → bool
```

- Define the set of constant-time operations on secret integers
 - Constant-time operations: +, *, -, ^, &, |, ~, >>, <<
 - Variable-time operations: /, %, ==, <, >
 - Depends on the target platform
- Secret integers **cannot** be used for branching, array indices, array lengths, and loop counters

There is a significant gap in performance between verified C code and assembly $(1.1 - 5.7 \times)$

How can we bridge this gap?

- Can we write verified assembly for each platform? It seems hard
- **Our approach:** obtain verified optimized code for multiple platforms from one *generic* implementation in F*

There is no verified implementation of cryptographic algorithms that rely on arbitrary-precision arithmetic

Can we implement and verify such algorithms in F^* ?

- a *constant-time* bignum library
- a *portable* bignum library
- an implementation of RSA-PSS and FFDHE (2048 8192 bits) needed for signing and key exchange in TLS 1.3
- Bignum256, Bignum512, Bignum4096, etc. needed for elliptic curves and ElectionGuard

We write *generic* verified code in F^* that compiles to optimized C code for different platforms, composable with verified assembly

• EverCrypt: a Verified Cryptographic Provider

- share the code between assembly and C implementations
- Curve25519
- A Verified Bignum Library
 - share the code between 32-bit and 64-bit bignum libraries
 - RSA-PSS, FFDHE, Ed25519
- HACL×N: Verified Generic SIMD Crypto
 - share the code between scalar and vectorized implementations
 - ChaCha20-Poly1305, SHA2-mb, Blake2

We write *generic* verified code in F^* that compiles to optimized C code for different platforms, composable with verified assembly

• EverCrypt: a Verified Cryptographic Provider

- share the code between assembly and C implementations
- Curve25519

Faster Modular Multiplication for Curve25519

Radix- 2^{64} multiplication can be implemented efficiently using the Intel ADX and MULX instructions

- Two addition instructions ADOX and ADCX compute addition with a carry using two independent carry flags
- We can implement multiplication with two parallel carry chains
- These instructions are not available in C, so we have to write this function in assembly

Mixed assembly-C implementation of Curve25519

HACL*-v1

• Verified a radix-2⁵¹ monolithic implementation

HACL*-v2

- Completely restructured the code to allow multiple field arithmetic implementations
- Identified performance critical functions for radix-2⁶⁴
- The Vale project implemented and verified them in Intel assembly
- Verified the composition of Low* and Vale code in F*

Multiplexing for Modular Multiplication

```
type field_spec = |M_{51}| |M_{64}
let felem (s:field_spec) = match s with
  | M<sub>51</sub> \rightarrow lbuffer sec_uint<sub>64</sub> 5ul
  | M_{64} \rightarrow \text{lbuffer sec uint}_{64} 4ul
let fmul (#s:field_spec) (out f1 f2:felem s) : Stack unit
  (requires \lambda h \rightarrow
      live h out \Lambda live h f<sub>1</sub> \Lambda live h f<sub>2</sub> \Lambda
     eq_or_disjoint f_1 f_2 \wedge eq_or_disjoint f_1 \text{ out } \Lambda
     eq_or_disjoint f<sub>2</sub> out \Lambda fmul_pre h f<sub>1</sub> f<sub>2</sub>)
  (ensures \lambda h_0 h_1 \rightarrow
     modifies (loc out) h_0 h_1 \Lambda fmul_post h_1 out \Lambda
    feval h_1 out == feval h_0 f_1 *\% feval h_0 f_2) =
  match s with
   | M<sub>51</sub> \rightarrow fmul_51 out f<sub>1</sub> f<sub>2</sub> (* from Low* implementation *)
  | M_{64} \rightarrow \text{fmul}_{64} \text{ out } f_1 f_2 \text{ (* from Vale implementation *)}
```

• Memory Safety, Functional Correctness, Secret Independence

• Multiplexing: composing multiple field arithmetic implementations

Implementation	Radix	Language	CPU cycles
donna-c64	2 ⁵¹	64-bit C	159634
fiat-crypto	2 ⁵¹	64-bit C	145248
amd64-64	2 ⁵¹	Intel x86_64 asm	143302
sandy2x	2 ^{25.5}	Intel AVX asm	135660
HACL*-v2 portable	2 ⁵¹	64-bit C	135636
openssl	2 ⁶⁴	Intel ADX asm	118604
Oliveira et al.	2 ⁶⁴	Intel ADX asm	115122
HACL*-v2 targeted	2 ⁶⁴	64-bit C	113614
		+ Intel ADX asm	

We write *generic* verified code in F^* that compiles to optimized C code for different platforms, composable with verified assembly

• EverCrypt: a Verified Cryptographic Provider

- share the code between assembly and C implementations
- Curve25519
- A Verified Bignum Library
 - share the code between 32-bit and 64-bit bignum libraries
 - RSA-PSS, FFDHE, Ed25519
- HACL×N: Verified Generic SIMD Crypto
 - share the code between scalar and vectorized implementations
 - ChaCha20-Poly1305, SHA2-mb, Blake2

We write *generic* verified code in F^* that compiles to optimized C code for different platforms, composable with verified assembly

• A Verified Bignum Library

- share the code between 32-bit and 64-bit bignum libraries
- RSA-PSS, FFDHE, Ed25519

Many cryptographic algorithms work with large numbers that do not fit within a machine word

- Elliptic Curve Cryptography
 - arithmetic modulo a prime of several hundred bits in size
 - Curve25519, Curve448, P-256, P-384, P-521, etc.
 - a modulus is usually known in advance
 - a "default" implementation for any prime of any size
- Finite-Field Cryptography
 - arithmetic modulo a large number of thousands bits in size
 - RSA, RSA-PSS, FFDHE, ElGamal, Paillier, etc.
 - a modulus is *not known in advance*, it is not always a prime, even its size is unknown

A Verified Bignum Library

Exponentiation is defined as a repeated application of a commutative monoid operation

- Modular Exponentiation: repeated modular multiplication
- Elliptic Curve Scalar Multiplication: repeated point addition

Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

 $a^b \mod n = (\dots ((a \cdot a) \mod n \cdot a) \mod n \cdot \dots \cdot a) \mod n$

The naive method requires b - 1 modular multiplications!

Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

 $a^b \mod n = (\dots ((a \cdot a) \mod n \cdot a) \mod n \cdot \dots \cdot a) \mod n$

• Generic methods, where a and b may vary

- Binary method, Fixed-window method
- Fixed base methods, where a is fixed
 - Fixed-base comb method
- Fixed exponent methods, where b is fixed
 - Addition-chain method

Binary Method for Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

• a binary representation for an exponent b: $a^b = a^{(b_\ell \dots b_2 b_1 b_0)_2} = a^{b_\ell \cdot 2^\ell + \dots + b_2 \cdot 2^2 + b_1 \cdot 2 + b_0}$

Binary Method for Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

- a binary representation for an exponent b: $a^b = a^{(b_\ell \dots b_2 b_1 b_0)_2} = a^{b_\ell \cdot 2^\ell + \dots + b_2 \cdot 2^2 + b_1 \cdot 2 + b_0}$
- using Horner's method we can write it as follows $a^b = (((\dots (1^2 \cdot a^{b_\ell})^2 \dots)^2 \cdot a^{b_2})^2 \cdot a^{b_1})^2 \cdot a^{b_0}$

Binary Method for Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

- a binary representation for an exponent b: $a^b = a^{(b_\ell \dots b_2 b_1 b_0)_2} = a^{b_\ell \cdot 2^\ell + \dots + b_2 \cdot 2^2 + b_1 \cdot 2 + b_0}$
- using Horner's method we can write it as follows $a^b = (((\dots (1^2 \cdot a^{b_\ell})^2 \dots)^2 \cdot a^{b_2})^2 \cdot a^{b_1})^2 \cdot a^{b_0}$
- Left-to-right binary method

$$\begin{aligned} acc_{i} &= a^{(b_{\ell} \dots b_{\ell-i})_{2}} \\ &= ((\dots (1^{2} \cdot a^{b_{\ell}})^{2} \dots)^{2} \cdot a^{b_{\ell-(i-1)}})^{2} \cdot a^{b_{\ell-i}} \\ &= (acc_{i-1})^{2} \cdot a^{b_{\ell-i}} \qquad (b_{\ell} \dots \underbrace{b_{\ell-i}}_{1 \text{ bit}} \dots b_{2} b_{1} b_{0})_{2} \end{aligned}$$

Fixed-Window Method for Modular Exponentiation

$$a^b \mod n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{b \text{ times}} \mod n$$

• a radix-2^w representation for an exponent b:

$$\begin{aligned} a^{b} &= a^{(b_{\ell} \dots b_{2} b_{1} b_{0})_{2^{w}}} = a^{b_{\ell} \cdot (2^{w})^{\ell} + \dots + b_{2} \cdot (2^{w})^{2} + b_{1} \cdot (2^{w}) + b_{0}} \\ a^{b} &= (((\dots (1^{2^{w}} \cdot a^{b_{\ell}})^{2^{w}} \dots)^{2^{w}} \cdot a^{b_{2}})^{2^{w}} \cdot a^{b_{1}})^{2^{w}} \cdot a^{b_{0}} \end{aligned}$$

• Left-to-right fixed-window method

$$\begin{aligned} acc_{i} &= a^{(b_{\ell} \dots b_{\ell-i})_{2^{w}}} \\ &= ((\dots (1^{2^{w}} \cdot a^{b_{\ell}})^{2^{w}} \dots)^{2^{w}} \cdot a^{b_{\ell-(i-1)}})^{2^{w}} \cdot a^{b_{\ell-i}} \\ &= (acc_{i-1})^{2^{w}} \cdot a^{b_{\ell-i}} \qquad (b_{\ell} \dots \underbrace{b_{\ell-i}}_{w \text{ bits}} \dots b_{2}b_{1}b_{0})_{2^{w}} \end{aligned}$$

Verified Exponentiation

```
class comm monoid (t:Type) = {
  one: t:
  mul: t \rightarrow t \rightarrow t;
  lemma one: a:t \rightarrow Lemma (mul a one == a);
  lemma mul assoc: a:t \rightarrow b:t \rightarrow c:t \rightarrow
     Lemma (mul (mul a b) c == mul a (mul b c));
  lemma mul comm: a:t \rightarrow b:t \rightarrow Lemma (mul a b == mul b a)
}
val exp_l2r_lemma: #t:Type \rightarrow k:comm_monoid t
  \rightarrow a:t \rightarrow bBits: \mathbb{N} \rightarrow b: \mathbb{N} \{ b < pow_2 \ bBits \} \rightarrow
  Lemma (exp l2r k a bBits b == pow k a b)
```

• Functional Correctness: Left-to-right binary method matches a mathematical definition of exponentiation

Squaring

How to compute $a \cdot a$ efficiently?

Squaring

How to compute $a \cdot a$ efficiently?

33/57

- Memory Safety
- Functional Correctness
- Secret Independence

Karatsuba Multiplication

How to compute $a \cdot b$ efficiently?

Karatsuba Multiplication

How to compute $a \cdot b$ efficiently?

The well-known optimization is Karatsuba Multiplication

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= (\mathbf{a}_1 \cdot \beta^{\ell/2} + \mathbf{a}_0) \cdot (\mathbf{b}_1 \cdot \beta^{\ell/2} + \mathbf{b}_0) \\ &= \mathbf{a}_1 \cdot \mathbf{b}_1 \cdot \beta^{\ell} + (\mathbf{a}_1 \cdot \mathbf{b}_0 + \mathbf{a}_0 \cdot \mathbf{b}_1) \cdot \beta^{\ell/2} + \mathbf{a}_0 \cdot \mathbf{b}_0 \end{aligned}$$

• Subtractive variant

 $a_1 \cdot b_0 + a_0 \cdot b_1 = a_1 \cdot b_1 + a_0 \cdot b_0 - (a_0 - a_1) \cdot (b_0 - b_1)$

Additive variant

 $a_1 \cdot b_0 + a_0 \cdot b_1 = (a_0 + a_1) \cdot (b_0 + b_1) - a_1 \cdot b_1 - a_0 \cdot b_0$

Montgomery Multiplication

How to compute $a \cdot b \mod n$ efficiently?

How to compute $a \cdot b \mod n$ efficiently?

- Montgomery multiplication replaces the expensive division by *n* with a fast division by a carefully chosen *r*
- Modular addition, subtraction, and multiplication can be efficiently done in the Montgomery domain

 $aM = a \cdot r \mod n$ $bM = b \cdot r \mod n$ $c = cM \cdot r^{-1} \mod n$

How to compute $a^b \mod n$ efficiently?

How to compute $a^b \mod n$ efficiently?

- pow_mod: repeated modular multiplication
- pow_mont: repeated Montgomery multiplication

• Memory Safety, Functional Correctness, Secret Independence

```
Extracted C code for modular exponentiation
    typedef struct bn_mont_ctx_u64_s {
        uint32_t len;
        uint64_t *n;
        uint64_t *r;
        bn_mont_ctx_u64;
        bn_mont_ctx_u64 *bn_mont_ctx_init(uint32_t len, uint64_t *n);
        void bn_mod_exp_consttime_precomp(bn_mont_ctx_u64 *k,
        uint64_t *a, uint32_t bBits, uint64_t *b, uint64_t *res);
```

Verified Applications

- Applications of arbitrary size bignums
 - FFDHE, RSA-PSS
- Applications of fixed size bignums
 - Bignum256, Bignum4096
- Applications of exponentiation for EC Scalar Multiplication
 - Ed25519

Performance Benchmarks

Implementation	2048	3072	4096	6144	8192
openssl-asm	6785	21509	50414	173646	411168
gmp-asm	8554	27121	62724	207042	486562
openssl-no-mulx	10613	34773	82075	279073	670069
HACL [*] -v2	15969	51940	116838	381314	878264
openssl-portable	39055	113443	263119	828745	1862540
gmp-portable	47283	149781	425988	1442425	3388961

Performance benchmarks for constant-time modular exponentiation $a^b \mod n$, where *a*, *b* and *n* are bignums of the same length. Measurements are in cycles (thousands) for input lengths ranging from 2048 to 8192 bits.

• Future work: use Vale code for ADX and MULX to close the performance gap

We write *generic* verified code in F^* that compiles to optimized C code for different platforms, composable with verified assembly

• EverCrypt: a Verified Cryptographic Provider

- share the code between assembly and C implementations
- Curve25519
- A Verified Bignum Library
 - share the code between 32-bit and 64-bit bignum libraries
 - RSA-PSS, FFDHE, Ed25519
- HACL×N: Verified Generic SIMD Crypto
 - share the code between scalar and vectorized implementations
 - ChaCha20-Poly1305, SHA2-mb, Blake2

We write *generic* verified code in F^* that compiles to optimized C code for different platforms, composable with verified assembly

• HACL×N: Verified Generic SIMD Crypto

- share the code between scalar and vectorized implementations
- ChaCha20-Poly1305, SHA2-mb, Blake2

How to speed up other implementations of algorithms in HACL*? The biggest performance impact comes from vector instructions

• e.g., Poly1305 in OpenSSL

File	LoC
poly1305-x86_64.pl	3287
poly1305-ppc.pl	1620
poly1305-x86.pl	1411
poly1305-armv4.pl	998
poly1305-sparcv9.pl	886
poly1305-s390x.pl	755
poly1305-armv8.pl	747
poly1305-ppcfp.pl	614

HACL×N: Verified Generic SIMD Crypto

- We identify the generic SIMD crypto programming patterns:
 - Exploiting Internal Parallelism (Blake2)
 - Multiple Input Parallelism (SHA-2)
 - Counter Mode Encryption (ChaCha20)
 - Polynomial Evaluation (Poly1305)
- We write one *generic* SIMD implementation in Low* and compile it to multiple platforms:
 - 128-bit vector instructions: ARM Neon and Intel AVX
 - 256-bit vector instructions: Intel AVX2
 - 512-bit vector instructions: Intel AVX512

- High-level spec: a mathematical spec of a crypto primitive
- Low-level spec: a pure spec of an optimized algorithm
- Stateful code: a Low* impl of the optimized algorithm

HACL×N programming workflow

- High-level spec: a mathematical spec of a crypto primitive
- Generic vectorized high-level spec: a mathematical spec of a *vectorized* algorithm
- Generic vectorized low-level spec:
 - a pure spec of a vectorized algorithm
- Stateful generic vectorized code: a Low* impl of the vectorized algorithm

HACL×N programming and verification workflow

Parallelizing Polynomial evaluation (Poly1305)

- The main computation in the Poly1305 MAC evaluates the following polynomial over \mathbb{Z}_p , where $p = 2^{130} 5$ $a = (m_1 \times r^n + m_2 \times r^{n-1} + \ldots + m_n \times r) \mod p$
- In practice, Horner's method is used

$$a = (\dots ((0+m_1) imes r+m_2) imes r+\dots+m_n) imes r mod mod p$$

•
$$w = 2$$

 $a_1 = (\dots ((m_1 \times r^2 + m_3) \times r^2 + m_5) \times r^2 + \dots + m_{n-1}) \mod p$
 $a_2 = (\dots ((m_2 \times r^2 + m_4) \times r^2 + m_6) \times r^2 + \dots + m_n) \mod p$
 $a = (a_1 \times r^2 + a_2 \times r) \mod p$

Scalar Field Arithmetic for Poly1305

High-level spec	mathematical integers	c = a + b
Low-level spec	machine integers	$c_i = a_i + b_i$

- $p = 2^{130} 5$, each element has up to 130 bits
- The well-known optimization is to use radix-2²⁶ $a = a_0 + a_1 \cdot 2^{26} + a_2 \cdot 2^{52} + a_3 \cdot 2^{78} + a_4 \cdot 2^{104}$ *a* is stored as an array of five **64-bit** unsigned integers
- Modular reduction: $2^{130} \mod p = 5$
- Implemented in donna-c32, fiat-crypto, HACL*, etc.

High-level spec	mathematical integers	c = a + b			
		f = d + e			
Vectorized	sequences of	[c;f] = map2 (+) [a;d] [b;e]			
High-level spec	mathematical integers				
Vectorized	128-bit machine	$[c_i; f_i] = [a_i; d_i] +_v [b_i; e_i]$			
Low-level spec	vector instructions				

e.g., $+_{\nu} = \underline{\text{mm}}_{add}_{epi64}$ for Intel AVX

Verified Vectorized Field Arithmetic for Poly1305

```
type field_spec = |M_{32}| |M_{128}| |M_{256}| |M_{512}|
let felem (s:field_spec) = lbuffer (sec_uint64xN s) 5ul
val fadd (#s:field_spec) (out f1 f2:felem s) : Stack unit
   (requires \lambda h \rightarrow
     live h out \Lambda live h f<sub>1</sub> \Lambda live h f<sub>2</sub> \Lambda
     eq_or_disjoint f_1 f_2 \Lambda eq_or_disjoint f_1 out \Lambda
     eq_or_disjoint f_2 out \Lambda fadd_pre h f_1 f_2)
   (ensures \lambda h_0 - h_1 \rightarrow
     modifies (loc out) h_0 h_1 \wedge fadd_{post} h_1 out \wedge
     feval h_1 out == map<sub>2</sub> (+%) (feval h_0 f<sub>1</sub>) (feval h_0 f<sub>2</sub>))
```

- Memory Safety
- Functional Correctness
- Secret Independence

Algorithm	Intel Kaby Lake Laptop			Intel Xeon Workstation			ARM Raspberry Pi 3B+		
	Our Code		Other	Our Code		Other	Our Code		Other
	Scalar	AVX2	Fastest	Scalar	AVX512	Fastest	Scalar	Neon	Fastest
ChaCha20	3.73	0.77	0.75	5.74	0.56	0.56	8.69	5.19	4.49
Poly1305	1.59	0.37	0.35	2.31	0.39	0.51	4.20	3.11	1.50
Blake2b	2.56	2.26	2.02	3.97	3.13	2.84	6.99	-	6.02
Blake2s	4.32	3.34	3.06	6.63	4.52	4.11	11.42	15.30	9.80
SHA _{224,256}	7.41	1.62×8	1.49×8	11.36	1.69×8	2.29×8	15.70	12.92×4	15.09
SHA _{384,512}	5.06	1.95×4	3.25	7.38	1.44×8	4.99	11.27	-	9.77

We measure CPU cycles per byte when processing 16384 bytes.

- Vectorization provides a measurable speedup for all our code on AVX2 and AVX512 $(1.1 10 \times)$
- Our code is between 3 15% slower than the fastest available hand-optimized assembly code on AVX2 and AVX512

Algorithm	Coding and Verification Effort (LoC)					Specialized Implementations				
	Scalar	Vec	Equiv	Low*	Out.	Portable	Arm A64		Intel x64	
	Spec	Spec	Proof	Impl.	C	C code	Neon	AVX	AVX2	AVX512
ChaCha20	151	182	819	510	4083	1	1	1	1	~
Poly1305	56	122	370	2361	7136	1	1	1	1	~
	(arith)		+3594							
Blake2b	420	4.4.1	204	1077	2024	1			1	
Blake2s	430	441	524	1077	2024	1	1	1		
SHA _{224,256}	012	420	662	1260	1617	1	1	1	1	
SHA _{384,512}	213	420	002	1300	4047	1			1	1
Total:	850	12242		18690	8	5	5	7	4	

- 8 algorithms
- 4 Low* implementations
- 8 portable C implementations
- 21 vectorized implementations for 4 architectures

Summary of research contributions:

- the first mixed assembly-C verified code
- the *first* verified bignum library suitable for crypto
- the *first* verified implementations of RSA-PSS and FFDHE
- the *first* verified vectorized implementations for ARM Neon and AVX512
- the *first* verified vectorized implementations for Blake2 and SHA-2

Summary of research contributions:

- significantly improved speeds for all algorithms in HACL*-v1 (between 3 10 $\times)$
- a more complete HACL*-v2 that now supports high-performance multi-platform implementations of
 - full ciphersuite of TLS 1.3 (Chacha20-Poly1305, X25519, SHA-2, RSA-PSS)
 - other protocols like WireGuard

Deployment

Performance Improvements via Formally-Verified Cryptography in Firefox

Kevin Jacobs and Benjamin Beurdouche July 6, 2020

Improving the implementation of cryptography in Tezos Octez

in-depth | 14 October 2021 | Nomadic Labs

- Various algorithms from our verified cryptographic library are already deployed in
 - Mozilla's NSS cryptographic library
 - Tezos blockchain
 - Wireguard VPN
 - Zinc crypto library for the Linux Kernel, etc.
- All our code is publicly available at https://github.com/project-everest/hacl-star

- Programming and Verification effort
- Protections against side-channel attacks
- The coverage of algorithms
 - Post-Quantum Cryptography
 - Lightweight Cryptography
 - Zero-Knowledge Proofs, etc.

The need for constant-time and highly-optimized functionally-correct code for newly designed constructions is dire

• e.g., an exploitable timing leakage was found in the official reference implementation of FrodoKEM

```
// If (Bp == BBp & C == CC) then ss = F(ct || k'), else ss = F(ct || s)
// Needs to avoid branching on secret data as per:
// Qian Guo, Thomas Johansson, Alexander Nilsson. A key-recovery timing attack on post-quantum
// primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In CRYPTO 2020.
intel selector = c_verify(Bp, BBp, PARAMS_NPARAMS_NBAR) | c_verify(C, CC, PARAMS_NBAR,NBAR);
// If (selector == 0) then load k' to do ss = F(ct || k'), else if (selector == -1) load s to do ss = F(ct || s)
ct_select((uinte_t*)Fin_K, (uinte_t*)kprime, (uinte_t*)ks_s, CRYPTO_BYTES, selector);
```

 As a first case study, we have built formally verified portable C implementations for all versions of FrodoKEM